MOTOROLA Order this document
SEMICONDUCTOR APPLICATION NOTE as AN499/D

AN499/D
Let the MC68HC705 program itself

By Ake Webjorn,
Motorola AB, Sweden

1 Introduction

There are several popular MCUs (Micro-Computer-Units) from Motorola on the market, which have their program
memory stored in a built-in EPROM (Erasable-Programmable-Read-Only-Memory) or OTP (One-Time-
Programmable) memory instead of the usual ROM (Read-Only-Memory). The difference between the EPROM
and OTP part, is that there is a window in the package on the EPROM version which makes it possible to erase
it under an UV-lamp for re-use. On the plastic OTP part, this window is missing, thus the EPROM array cannot be
erased. OTPs are normally packaged in plastic which ensures a low cost high volume product.

EPROM memory cells require more mask layers in fabrication of the device, and testing of the EPROM cell is time
consuming, which helps drive the cost higher than a normal ROM part. On delivery of the EPROM/OTP product
another cost is the programming of the user program before the product is used. But it also means that the
EPROM/OTP MCU becomes a more flexible product, allowing customer changes and requests to be met easily
and enabling the product to be brought to market in a very short time. Some of the more popular types on the
market are MC68HC711E9, MC68HC711D3, MC68HC705C8, MC68HC705P9 and MC68HC705J2.

The programming of the EPROM inside this kind of MCU is normally achieved with a built-in program that has
been written and supplied by Motorola. This program is stored in a special area of ROM inside the MCU. The MCU
starts to execute this built-in program under special circumstances, e.g., when the voltage on one or several pins
at reset is above a certain level. This special mode of operation is called the bootloader mode. In this mode the
MCU assumes that special programming hardware is connected to it. The bootloader then reads data from an
external EPROM connected to the parallel /O ports, or data from a serial port. Then it starts the programming by
writing the data into the internal EPROM. It also controls the special programming voltage and keeps track of the
time the cell inside the EPROM is programmed. In that way it provides a simple and efficient way for the customer
to program the MCUs. Once completed, the MCU is inserted into its end application, and the user code in the
EPROM is executed.

Sometimes it would be nice to be able to custom-program part or all of the built-in EPROM of the MCU, and to
do so in the normal user mode rather than in the special bootstrap mode. The reason could be to be able to modify,
add features or even remove parts of the standard program. Examples are adding program routines, storing serial
numbers, calibration values, code keys, information on what external equipment is attached, removing test
programs, etc.

1.1 Three examples of when this technique could be used

A traditional electronic door lock uses an MCU that compares the keys pushed, with a set of switches that
determine the door opening code. If instead, the switches are stored in EPROM inside the MCU, then there is no
way a burglar could open doors by simply breaking the lock cabinet, reading the switches and pushing the keys.

A second example is a small combustion engine. This needs a carefully adjusted air/gas mixture to minimise
pollution. It is possible to write the program so that the MCU finds out the status of the engine and adapts to it.
But this process may take a minute before the engine can give any output power; pollution will be quite large
during this time. So it would be beneficial if the engine controller could memorise the last set-up values.

In a third example, a manufacturer wants to keep set-up/calibration routines for a system secret. With an EPROM-

based MCU, it is simple to have a routine that, after the factory calibration or burn-in phase, simply removes the
code by writing over the original set-up/calibration program with dummy code.

7/96

AT
ﬁ LA

© MOTOROLA LTD., 1996. All trademarks are recognised.



2 Contents of this application note

This application note is divided into three parts.

— The first part describes how the MCU is normally programmed in the special bootloader mode.

— The second part describes the design of hardware and software that allows the MCU to program itself.
— The third and last part gives some ideas on how to modify the program for enhancement.

The application note ends with the source code of the entire program.

3 How the programming is done

First let’s look at how the built-in ROM program in an MC68HC705 MCU programs the EPROM inside.

3.1 Normal programming

Normally an MCU is run in the user mode. But to get access to the built-in ROM with the bootloader
program, the MCU is powered up in a special way. This is done by resetting the MCU, that is by pulling the
/RESET line low, then keeping the /INT at a high voltage while pulling the reset line high again.

See the Technical Data book for more information about the voltage required on the /INT pin.

When the CPU (Central Processing Unit) inside the MCU, senses these conditions, it enters the special test
mode. This mode makes the CPU start to fetch instructions from a small built-in ROM. The first thing that
this program does is make the CPU read a port. The value on this port decides which program of the internal
ROM should be run. Typical programs available are test routines used by the production and bootloader
routines for programming and verifying the contents of the internal EPROM.

The programming routine in the bootloader program reads data from an external memory or from the serial
port, and writes it into the EPROM. The verifying routine reads data from an external memory and
compares it with the EPROM.

3.1.1 The program in more detalil

Now let’s look more closely at how a byte in the EPROM is programmed. The MC68HC705P9/D data book,
section 11, is useful for reference.
The programming consists of the following steps:

a. First the CPU sets the latch bit in the internal eprog register. This arms the EPROM data- and address
bus latches.

b. It then writes the data to the selected address in the EPROM array. Both data- and addressbus are
latched.

Using another port pin, the external programming voltage, Vpp is connected to the /INT-Vpp pin.
Then it sets the epgm bit in the eprog register. This connects Vpp power to the EPROM array.
The program waits for the programming time which is 4 mS.

-~ ® 2 0

Lastly, the latch and the epgm bits are cleared. This stops the programming and makes the EPROM
behave as a normal memory again. The Vpp voltage is also removed.

In the bootloader mode the code to do this is fairly simple. To do it in user mode requires some extra effort.
This is because the programming routine must be in a different memory space than the EPROM. When
programming the EPROM cells, the CPU cannot execute instructions from the same memory area.

MOTOROLA AN499/D
2



In user mode, the normal EPROM cannot be used to hold the programming software, because the address
is latched with the value to be programmed. So the CPU cannot get its instructions from the EPROM, but
must get them from elsewhere. The built-in ROM cannot be used either, because it is disabled in user
mode. This means that the code must be put in the internal RAM (Random Access Memory).

The solution is to write a programming routine that is stored in EPROM. When the CPU wants to program
the EPROM in user mode, it copies this routine out into RAM. It then calls the routine in RAM that does
the programming. When complete, it returns to executing from EPROM.

The code of the programming routine is only 42 bytes long and the entire programming code takes 57
bytes. With the additional demonstration routines, the entire program is about 600 bytes.

4 The new approach

Now let’s take a look at the new approach. First the hardware is discussed and then the software is
described.

4.1 Hardware design

The test set-up is shown in Figure 1. The board, called PRITSE for PRogram-IT-SEIf, is shown to the left in
the diagram. To the right it is connected with a serial cable to a PC or terminal.

System Layout

PRITSE
(I
T Power
[I :_ control
MCU -
D —  Serial | f |
<@— interface - RS232
— :=
[}
Product Programmer
gy AR
/ —_— ———— — U

Figure 1. The test set-up

The PRITSE circuit board consists of two parts. In the white area the MCU and other components represent
the finished product. The grey area, or programmer area, is what is added to program the MCU. The
programmer area is connected for serial 9600 baud asynchronous communication with the outside world.
On the other side it talks with the MCU with five I/O pins. The programmer area contains programming
voltage control circuitry, an RS232 driver/receiver and one switch. This switch is used to select if normal
operation or programming should take place.

AN499/D MOTOROLA
3



Three different MCUs have been used to test the program. They are the MC68HC705P9, the
MC68HC705P6 and the MC68HC705J2. For more information on these devices, see the technical
reference manuals such as MC68HC705P9/D.

To be able to run the code on a large set of MCUSs, no interrupts or complicated 1/0O port functions were
used. For most designs it is sufficient to connect the MCU as the drawing shows and make some minor
software adjustments.

A detailed schematic of the circuit board is shown in Figure 2.

Circuit Diagram

+165V—— \pp Voo _%' p— Vee
10 KQ
+5V vcC
0.1 pF
ov 37 pF . g K¢
0SC1 R7
| . . 27kq 422 10 pF
L 19 n
4 MHz |_:r| 10 MOhm 20 17 +
/0SC2 10 uF }— Vee
——e—e Cl“f MC145407
37 pF 10Ka Reset A4 18 4 . 25-pin
Veo MC68HC705P9 | g our [ Rs2s2 4| }_l ek
vee MCEBHC7O5PE | o cz —|___E3 [ Receiver 10 4F
= o1 T MC68HC705J2
4.7 KQ M
— PA2
/IRQ/VPP - SCIEEEE q—s 2L
< < 1 o
! R2 0 o 15 6 3
LED1 D1 /IR -
/ 1KQ PAL _SCITR 2 s
10KQ -
7
VPP PAO 111,13,7,2 [

R3 vSsi
1K
TR1
R6
TRo 2N2222 PN

Figure 2. A schematic of the circuit board

Here follows a more detailed description of the hardware details of PRITSE.

4.1.1 Port PAO

This pin on the MCU, PGMR switches the high programming voltage to the /IRQ-Vpp pin. The resistors
R5 and R6 turn off the Vpp signal when PAO is in high-impedance state. This happens whenever the MCU
is being reset. The resistor R2, the diode D1 and the LED LED1 are there for diagnostic purposes. The LED1
turns on when /IRQ-VPP is higher than Vcc.

4.1.2 PortAl

PA1 is the serial SCI transmitter. It is implemented in software and runs in half duplex mode. The standard
speed is 9600 baud, but can easily be changed in software.

MOTOROLA AN499/D
4



4.1.3 Port A2

PAZ2 is the serial SCI receiver, also implemented in software. It runs in half duplex at the same speed as
the transmitter.

41.4 Port A3

PA3 is connected to an LED2 for diagnostic purpose. In the program it is set to turn on while the CPU
fetches instructions from the RAM.

4.1.5 Port A4

PA4 is an input from a switch. It is used to select between normal operation or programming mode. See
paragraph 4.3 for further details.

4.2  Software implementation

The software is written to be easy to understand. It is divided into five modules (see Figure 3):

MCUTYPE.ASM MCU type declarations

MACRO.ASM Macro routines

UTILITY.ASM General utility programs

PROG.ASM Reading and writing from the EPROM
PRITSE.ASM Main program

The modules are not linked to each other but assembled as one big file. There is one large module called
PRITSE.ASM. All the other programs are included in this module.

Program Layout
—%m// %

PRITSE

Figure 3. The relationship of each program module

The MCUTYPE.ASM describes the address map of the selected MCU. The MC68HC705P9 memory map
is displayed. In appendix 1 and 2, the MC68HC705J2 and the MC68HC705P6 are shown. If another MCU
is used, it is simple to change the contents to MCUTYPE.ASM.

AN499/D MOTOROLA
5



The MACRO.ASM contains a set of simple macros for handling in- and outports, messages, and conditional
jumps. The purpose of the macros is to make the source code easier to understand. This program was
written with P&E IASMO05 macro assembler. It may be necessary to change a few macros, if another
assembler is to be used.

The UTILITY.ASM contains a number of subroutines. They are used by the debugging part of the program.
Most of the routines make interfacing with a standard terminal easy. They can therefore be of interest in
other applications.

PROG.ASM contains the routines for reading and programming the EPROM. These are the routines that
are of major importance to this application.

PRITSE.ASM is the main program. As mentioned before, the other programs are not linked, but handled by
the assembler IASMO5 as include files.

A condition called debug is set or cleared in the beginning of PRITSE.ASM. When set, this condition turns
off the code that turns on the actual programming voltage. The debug condition is needed when debugging
the program with an emulator.

MOTOROLA AN499/D
6



4.3 Software design

The MCU can run in two ways. The flow of the program is shown in Figure 4.

init:

Initialise

Read last byte Transmit
message
Transmit EPROM
Hash with content
LED *
Ask for new content
for last byte
yes KEY no
pressed ?
g0)
yes
Prog. EPROM

Figure 4. The program flow

If normal mode is selected with pin PA4 set on the MCU, it flashes with the LED2 connected to PA3. The
speed of the flashing is proportional to the last programmed byte in the EPROM. The delay is done by
decrementing a timer loaded with the data of the last byte written into the EPROM.

AN499/D MOTOROLA
7



If programming mode is selected instead, it will behave as follows:
a. Transmits a message to the terminal, telling which version its internal program has.

b. It displays the EPROM buffer that is 256 bytes long by writing its hexadecimal values on the external
PC or terminal.

c. Then it asks the user for a new value to program.
d. If a valid key combination is entered, the program continues, else it loops back to b.
e. The EPROM is programmed and the program loops back to b.

The complete program list is shown as list 1 in Appendix 3.
The description that follows covers only the programming procedures.
4.3.1 Programming model

Figure 5 gives a short description of what the address range of the MC68HC705 MCU looks like. The 1/O
ports are at the low addresses. Then a bit higher up comes the internal RAM. This is used both for storage
of variables and for the stack. And even higher up comes the EPROM, which is used for storing the
program. Three labels are shown. Prog_eprom and prog_rout are the routines that do the programming. A
third label, EPROM _area, is shown at a higher address. This label points at the area which is free for writing
variables.

4.3.2 The prog_eprom routine

When programming is needed, the prog_eprom routine is called. See Figure 6.

a. It starts by looking for a free EPROM byte that has not been programmed before. It begins at the
address EPROM _area + 255 and scans downward. If a free byte is found before the pointer passes
EPROM _area, the program continues.

b. The next step is to copy the routine prog_rout to the RAM. The start address is called RAM_area.

c. Then it gets the byte to store from the cell eprom_data. which in this example is $9B. It has been stored
there by the software SCI.

d. The CPU then jumps to prog_rout that now can be found in RAM_area
4.3.3 The prog_rout routine

The program continues to run at the RAM _area label (see Figure 7).
a. First it sets the pgmr bit in porta. This turns on the programming voltage to the MCU.

b. Then self modifying code is used to modify the address at selfmod. This is a full 16-bit address used by
the "STA" instruction.

c. The latch bit is set in eprog. Now the EPROM is waiting for code input and is no longer available for
execution.

d. The code that is in eprom_data is copied to the modified address which is stored at selfmod.

e. The epgm bit is set in eprog. This starts the programming. Then it waits for 4 mS while the EPROM is
programmed.

f. The latch and epgm bits in eprog register are cleared. This stops programming and enables the EPROM
for normal execution again.

g. Finally, the pgmr bit in porta is cleared to remove the high programming voltage and to return to
prog_eprom.

MOTOROLA AN499/D
8



EPROM _area:

prog_eprom:

prog_rout:

RAM _area:

eprom_data:

epgm:

porta:

RAM

Figure 5. The address range of the MCU

EPROM

AN499/D

MOTOROLA
9



4)

EPROM area:

prog_eprom:

prog_rout:

- RAM area:

eprom_data:
epgm:

porta:

prog_eprom()

00

00

00

0D

32

51

Goto RAM_area (4)

Get data to write (3)

Copy prog_rout() to RAM _area (2)
Look for free space (1)

Clear pgmri porta

Clear the latch and epgm bits in
eprog

Wait 4 mS

Set the epgm bit in eprog:
Write eprom_data to modified
address

Set latch bit in eprog:

Modify address at selfmod:

Set pgmr bit in porta

rat--- 2 ()

Clear pgmr i porta

Clear the latch and epgm bits in
eprog

Wait 4 mS

Set the epgm bit in eprog:
Write eprom_data to modified
address

Set latch bit in eprog:

Modify address at selfmod-:

Set pgmr bit in porta

| 9B

')

= (3)

Figure 6. The prog_eprom routine

MOTOROLA
10

AN499/D



EPROM area:

prog_eprom:

prog_rout:

RAM_area:

eprom_data:
epgm:

porta:

prog_rout()

00

00

9B

0D

32

ol

RAM area
Get data to write
Copy prog _rout() to RAM_area
Look for free space

Clear pgmr i porta

Clear the /atch and epgm bits in
eprog

Wait 4 mS

Set the epgm bit in eprog:
Write eprom_data to modified
address

Set latch bit in eprog:

Modify address at selfmod:

Set pgmr bit in porta

Clear pgmr i porta (7)

Clear the latch and epgm bits in
eprog (6)

Wait 4 mS

Set the epgm bit in eprog: (5)
Write eprom_data to modified
address (4)

Set latch bit in eprog: (3)
Modify address at selfmod.: (2)
Set pgmr bit in porta (1)

| 9B

| latch epgmr

| pamr

Figure 7. The prog_rout routine

~-a---- (3),(5).(6)

-----

(1).(7)

4)

AN499/D

MOTOROLA
11



5 Suggested improvements

Here are some ideas for improvements to the standard software.

5.1 Toremove a program

There can be parts of the program that should be removed before leaving the factory. However an MCU
with EPROM cells cannot be partially erased.

A way of making bytes in the EPROM unreadable is to program all bits, that is, to write '$OFF" in the cells.
Now '$0FF' is interpreted by the MC68HCO5 processors as the instruction 'STX X ".

This means that before calling a routine that might be erased, the X register should point at a harmless
location in the first 256 bytes of the memory map. The routine should of course be terminated with a ‘RTS'
instruction.

Here is an example of this code where the routine calib has been removed.

LDX #stack_bottom ; point at harm ess | ocation
JSR calib ;call the procedure
RTS

calib: STX , X ;the original code is renoved
STX , X
RTS ;until the last RTS instruction

5.2 To handle larger programs

To modify the code so that it can handle programs larger than 256 bytes is quite easy. The routine
find_free() must be changed to handle the larger address range.

Note that the routine read() is made too complicated. There is no need to jump out into the RAM, just to
read a byte of EPROM. The reason that this routine was made so unnecessarily complicated was to make
it easy to handle larger programs than 256 bytes.

5.3 Download the programming algorithm

It is of course possible to not include any programming algorithm at all in the program, and still do
programming. What is required is a driver, e.g., for a serial port. The code, prog_rout, which is about 60
bytes, is downloaded together with the data and address to the RAM. The program then programs the data
into the EPROM cells, and disappears when the power is removed. This gives most flexibility.

6 Conclusion

This application note shows that it is quite simple to add EPROM programming to MC68HC705
microcomputer applications. | hope that it suggests some new ideas on how to tackle and solve the
EPROM programming problem.

Acknowledgements

The author acknowledges the help and assistance of his colleagues Jeff Wright, Dugald Campbell and
Anthony Breslin.

MOTOROLA AN499/D
12



Appendix 1

. PAGE
. SUBHEADER ' MCU t ype'
;1 ast change 94-02-18

1

D= MC68HC705J2 =
érased EQU $0 ;erase EPROM cel |
ORG $0
porta RVB 1 ;port A
DDR EQU 4 ;offset for data direction reg.
pgnr EQU 0 ;to turn on progranm ng vol tage
scitr EQU 1 ;SCl transmtter
scirec EQU 2 ; SCl receive register
LED EQU 3 ;to drive diagnostic LED

; EPROM progranmm ng register
ORG

$1C
eprog RVB 1
epgm EQU 0 ;bit 0
| atch EQU 2 ;bit 2
pr_tine EQU 4 ;tine in B
; menory paraneters
ramstart EQU $90
romstart EQU $700
rom end EQU $F00
; Mask Option Register
nmor _adr EQU $F00
nmor EQU $0

; Reset vector
reset vect or EQUSFFE

AN499/D

MOTOROLA
13



Appendix 2

. PAGE

. SUBHEADER ' MCU t ype'
;1 ast change 94-03-04

1

;= MC68HC705P6 =
érased EQU $0 ;erase EPROM cel |
ORG $0
porta RVB 1 ;port A
DDR EQU 4 ;offset for data direction reg.
pgnr EQU 0 ;to turn on progranm ng vol tage
scitr EQU 1 ;SCl transmtter
scirec EQU 2 ; SCl receive register
LED EQU 3 ;to drive diagnostic LED

; EPROM progranm ng register
ORG

$1C
eprog RVB 1
epgm EQU 0 ;bit 0
| atch EQU 2 ;bit 2
pr_tine EQU 4 ;tine in B
; menory paraneters
ramstart EQU $50
romstart EQU $100
rom end EQU $1300
; Mask Option Register
nmor _adr EQU $1F00
nor EQU $0

; Reset vector

reset vect or EQUS1FFE

MOTOROLA
14

AN499/D



Appendix 3

PRI TSE. ASM
PRogram | T- SEI f

Assenbled with |ASM 03/10/1994 10:13 PACE 1

1 ; last change 94-03-09
2
3 ;******************************************
4 * PRogram | T- SEI f *
5 ;******************************************
6 ; This program shows how the MCU
7 prograns its own EPROM
8
0000 9 $BASE 10T
10 ; $SET debug ;determines if debug node
0000 11 $SETNOT debug
RI TSE. ASM Assenbled with ASM 03/10/1994 10:13 PAGE 2
PRogram | T- SEI f
Mai n program
0000 11 $I NCLUDE "pritse\ntutype. asnt
RI TSE. ASM Assenbled with ASM 03/10/1994 10:13 PAGE 3
PRogram | T- SEI f
MCU type
11 ;last change 94-03-09
12
13 ;= MC68HC705P9 =
14
0000 15 erased EQU $0 ;erase EPROM cel |
16
17 ;Ports on the MCU
0000 18 ORG $0
0000 19 porta RVB 1 ;port A
0001 20 DDR EQU 4 ;offset for data
21 ;direction reg.
0001 22  pgnr EQU 0 ;to turn on progranmm ng
23 ;vol tage
0001 24 scitr EQU 1 ;SCl transmitter
0001 25 scirec EQU 2 ; SCl receive register
0001 26 LED EQU 3 ;to drive diagnostic LED
0001 27 key EQU 4 ;key to switch nodes
28
29 ; EPROM progranm ng register
0oicC 30 ORG $1C
001C 31 eprog RVB 1
001D 32 epgm EQU 0 ;bit O
001D 33 latch EQU 2 ;bit 2
001D 34 pr_tine EQU 4 ;time in nBS
35
36 ; nmenory paraneters
001D 37 ramstart EQU $80
001D 38 romstart EQU $100
001D 39 romend EQU $900
40
41 ; Mask Option Register
001D 42  nor_adr EQU $900
001D 43 nor EQU $0
44
45 ; Reset vector
001D 46 reset_vector EQU $1FFE
47
001D 48 $I NCLUDE "pritse\nacros. asnt
AN499/D MOTOROLA

15



PRI TSE. ASM Assenbled with IASM 03/10/1994 10:13 PACE 4
PRogram | T- SEI f
MACRO routi nes

48 ; last change 94-03-09
49
50 ;= Macros for the assenbler routine =
51 ;
52
001D 53 $MACRO i nport
54 BCLR %, { ¥2+DDR}
001D 55 $MACRCEND
56
001D 57 $MACRO outport
58 BSET %, { ¥2+DDR}
001D 59 $MACRCEND
60
001D 61 $MACRO nessage
62 LDX #{ % - msg}
63 JSR Xmi t msg
001D 64 $MACRCEND
65
001D 66 $MACRO if_smaller
67 CMPA #{ 9%}
68 BCS 9"
001D 69 $MACRCEND
70
001D 71 $MACRO if_larger
72 CcWP # vd+1}
73 BCC 9"
001D 74 $MACRCEND
75
001D 76 $MACRO if_equal
77 cwP #{ 9%}
78 BEQ %
001D 79 $MACROEND
80
001D 81 $MACRO if_not_equal
82 cwP #{ %}
83 BNE 9"
001D 84 $MACROEND
85
001D 86 $INCLUDE "pritse\utility.asnt
MOTOROLA AN499/D

16



PRI TSE. ASM
PRogram | T- SEI f

Utility routines

Assenbl ed with | ASM

03/10/1994 10:13

PAGE 5

86 ; Last change 94-03-10
87
88
89 ;= Utility Routines =
90 ;
91
92 ;
93 ;= Synbol i ¢ absol ute val ues =
94 ;
95
001D 96 del 24 EQU 134T ; bitwait for 1200 baud,
97 ; @4 Mhz
001D 98 stopbit EQU 2 ; two stop bits
001D 99 cr EQU $ODH , carriage return
001D 100 If EQU $0AH ; line feed
001D 101 esc EQU $1BH ; escape
001D 102 bell EQU $07H ; bell
103
104
105 ;= Start of RAM area =
106 ;
107
0080 108 ORG ramstart
109
110 ; SCl data
0080 111 bitcount RVB 1 ; bit counter for transmt
0081 112 tr_char RVB 1 ; tnp storage for transmt
0082 113 rec_char RVB 1 ; tnp storage for transmt
0083 114 sav_char RVB 1 ; tnp storage for transmt
0084 115 hex RVB 1 ; tnp storage for tohex
0085 116 strptr RVB 1 ; string pointer
117
118 ; display data
0086 119 byt ecount RVB 1 ; byte counter
0087 120 col count RVB 1 ; colum counter
0088 121 count RVB 1 ; counter
0089 122 src_adr RVB 1 ; source address
008A 123 dst_adr RVB 1 ; destination address
124
125 ; epromdata
008B 126 eprom data RVB 1 ; data to eprom
008C 127 adr_hi RVB 1 ; address, high byte
008D 128 adr_lo RVB 1 ; address, |ow byte
129
130 ;
131 ;= Start of free RAM area =
132
133 ;Here starts enpty RAM area used by rel ocated prograns
008E 134 RAM area: ORG
135
AN499/D MOTOROLA

17



PRI TSE. ASM

PRogram | T- SEI f
Utility routines

Assenbled with |ASM 03/10/1994 10:13 PAGE 6

135
136 ;= Start of ROM area =
137
0100 138 ORG romstart
139
140 ;
141 ;= Bitwait delay routines =
142
143 ; Function: bitwait(,)
144 ; Description: Delay for asyncronous transm ssion
145 ; Input: delay inreg A
146 ; Qutput: none
147 ; Uses: none
148 ; Note: bitwait fornula: bitwait = 32 + 6 ; A cycles
149 ; bit time for 9600 baud is 104 uS or 208 cycles at 4 Mz
150 ; A =30 gives a bit time of 106 uS, or an error of < 2%
151 ; mninmum baudrate is about 1300 baud
152 ; Reg X is not used.
153 halfbitwait:
0100 A643 154 LDA #{del 24 | 2} ;2 cycles
0102 2002 155 BRA bitwaitl ;3 cycles
156
157 bitwait:
0104 A686 158 LDA #del 24 ;2 cycles
159
160 bitwaitl
0106 4A 161 DECA ;3 cycles
0107 26FD 162 BNE bitwaitl ;3 cycles
0109 81 163 RTS ;6 cycles
164
165
166 ;
167 ;= Transmt one character =
168 ;
169 ; Function: transmit(a,)
170 ; Description: Transmit one character
171 ; Input: character to transmt in reg A
172 ; Uses: char, bitcounter
173 ; CQutput: none
174 ; Uses: tr_char, bitcount, porta
175 ; Note:
176 transmt:
010A B781 177 STA tr_char ;save the char in rot. buffer
010C A609 178 LDA #9 ;prepare to transmt 9 bits
010E B780 179 STA bi t count ;save it in bitcount
0110 1200 180 BSET scitr,porta ;pull scitr high
0112 ADFO 181 BSR bi twai t ;wait one bit tine
0114 1300 182 BCLR scitr,porta ;send start bit
183
184 ; transnmit one bit
185 tra3:
0116 ADEC 186 BSR bi t wai t ;6 cycles
0118 3A80 187 DEC bi t count ;5 cycles
011A 270C 188 BEQ tra2 ;3 cycles
011C 3681 189 ROR tr_char ;5 cycles
011E 2504 190 BCS tral ;3 cycles
191 e
MOTOROLA AN499/D

18



PRI TSE. ASM

PRogram | T- SEI f
Utility routines

Assenbl ed with | ASM

03/10/1994 10:13 PAGE 7

192 ; 32 (see bitwait routine)
0120 1300 193 BCLR scitr,porta ;send O
0122 20F2 194 BRA tra3
195
196 tral:
0124 1200 197 BSET scitr,porta ;or send 1
0126 20EE 198 BRA tra3
199
200 tra2:
0128 1200 201 BSET scitr,porta ;send stop bit
012A ADD8 202 BSR bi t wai t ;wait one period
012C 81 203 RTS
204
205
206
207 ;= Transm t ROM nmessage =
208
209 ; Function: xmt_nsg(, x)
210 ; Desciption: Transmit nessage stored in ROM
211 ; Input: X contains offset in nsg area
212 ; Uses: strptr
213 ; CQutput: none
214 ; Uses: strpptr
215 ; Note: This routine is called by the nacro 'nessage'
216 ; The nessage is termnated with O
217
218 nsgQ: ;relativ address
219 init_nsg:
012D 0DOA2020 220 DB cr,lf,’ PRogram I T-SEI f, V 1.0',cr,If,
20202050
526F6772
616D2D49
542D5345
6C662C20
5620312E
300D0A00
221 buffer_nmnsg:
014D ODOAODOA 222 DB cr,If,cr,If,"Buffer content:',cr,If,0
42756666
65722063
6F6E7465
6E743A0D
0A00
223 quest_nsgQ:
0163 203F20 224 DB B
225 nl _msg:
0166 ODOAOO 226 DB cr,lf,0
227 data_nsg:
0169 0DOA4461 228 DB cr,lf,' Data:
74613A20
00
229 nmemfull _msg:
0172 0DOA4D65 230 DB cr,lf,"Mermory full',0
6D6F7279
2066756C
6C00
231
AN499/D MOTOROLA

19



PRI TSE. ASM

PRogram | T- SEI f
Utility routines

Assenbled with ASM  03/10/1994 10:13 PAGE 8

232 xmtnsg:
0180 BF85 233 STX strptr ; save pointer in strptr
234
235 xmtmsg2:
0182 BE85 236 LDX strptr ; get pointer to X
0184 D6012D 237 LDA msg, X ; get character
0187 2707 238 BEQ xm t msgl ; done if O
0189 CDO10A 239 JSR transmt ; el se send one character
018C 3C85 240 I NC strptr ; nove pointer
018E 20F2 241 BRA xm t msg2
242
243 xmtmsgl:
0190 81 244 RTS ; return back
245
246
247 ;= Convert to hexadeci mal =
248
249 ; Function: to_ascii(a)
250 ; Description: Transnmits byte as a 2 digit hexadeci nal val ue
251 ; Input: A contains byte to convert
252 ; CQutput: none
253 ; Uses: hex, hexstr
254 hexstr:
0191 30313233 255 DB ' 0123456789ABCDEF'
34353637
38394142
43444546
256
257 to_ascii:
01A1 B784 258 STA hex ; save hex val ue
01A3 44 259 LSRA ; shift right 4 tines to
260 ; get high nibble
01A4 44 261 LSRA
01A5 44 262 LSRA
01A6 44 263 LSRA
01A7 97 264 TAX ;o put result in x
01A8 D60191 265 LDA hexstr, X ; translate to ASCl |
01AB CDO10A 266 JSR transmt ; transmit result
267
01AE B684 268 LDA hex ; get hex val ue again
01BO A40F 269 AND #$F ; mask | ow ni bbl e
01B2 97 270 TAX
01B3 D60191 271 LDA hexstr, X ; translate to ASCl |
01B6 CDO10A 272 JSR transmt ; transmit | ow nibble
273
01B9 A620 274 LDA #
01BB CDO10A 275 JSR transmt ;finish with a space
01BE 81 276 RTS
277
278
279 ;= Convert from ASCI| to hexadeci anal =
280 ;
281 ; Function: to_hex(a): byte,carry flag
282 ; Description: Translates a byte as a 2 digit
283 ; hexadeci mal val ue
284 ; Input: A contains byte to convert
285 ; Qutput: return value in A Carry flag if bad input
MOTOROLA AN499/D

20



PRI TSE. ASM Assenbled with |ASM 03/10/1994 10:13 PAGE 9
PRogram | T- SEI f
Utility routines
286 ; Uses: none
287 to_hex:
01BF macro 288 if_smaller # a',to_hex2
01C3 A020 289 SUB #$20 ;convert | ower case
290 to_hex2:
01C5 macro 291 if_larger # F ,to_hex5 if > "F junp
01C9 nmacro 292 if_smaller # 0',to_hex5 ;if <0 junp
01CD macro 293 if_larger # @, to_hexl if >'@ junp
01D1 macro 294 if_larger # 9',to_hex5 ;if >'9" junp
295
296 to_hex1:
01D5 A030 297 SUB # 0 ;convert to decimal
01D7 macro 298 if_smaller #10T, t o_hex3
01DB A007 299 SuB #{'A-'9 - 1}
01DD 2502 300 BCS to_hex5
301 to_hex3:
01DF 98 302 CLC ;no errors, clear carry
01EO0 81 303 RTS ;and return
304
305 to_hexb:
01E1 99 306 SEC ,error, set carry
01E2 81 307 RTS ;and return
308
309
310 ;
311 ;= Recei ve one character =
312 ;
313 ; Function: receive(): byte,carry flag
314 ; Description: Receveives one character
315 ; Input: none
316 ; CQutput: character that is received in reg A
317 ; Uses: rec_char, porta
318 ; Note:
319 receive:
01E3 3F82 320 CLR rec_char ;clear rec_char
01E5 AEO8 321 LDX #8 ;load 8 in index
322
323 recO:
01E7 0500FD 324 BRCLR scirec,porta,recO ;wait for idle line
325
326 recl:
01EA 0400FD 327 BRSET scirec,porta,recl ;wait for start bi
01ED CD0100 328 JSR hal f bi twai t ;wait 1/2 bit
329
330 rec2:
01F0 CD0104 331 JSR bi twai t ;wait 1 bit
01F3 B682 332 LDA rec_char ;read the rec_char
01F5 44 333 LSRA ;shift right
01F6 050002 334 BRCLR scirec,porta,rec3 ;if bit is 0, junp
01F9 AA80 335 ORA #$80 ;else add 1
336 rec3:
01FB B782 337 STA rec_char ;save result
01FD 5A 338 DECX ; decrenent bit count
01FE 26F0 339 BNE rec2 ;any bits left ?
0200 81 340 RTS ;if no, the return
341
342
AN499/D MOTOROLA

21



PRI TSE. ASM

PRogram | T- SEI f
Utility routines

Assenbled with |ASM  03/10/1994 10:13 PAGE 10

343
344
345 Recei ve one byte =
346
347 ; Function: recbyte(): byte,carry flag
348 ; Description: Receveives two characters as one byte
349 ; Input: none
350 ; Cutput: byte A carry flag set if bad input.
351 ; Uses: hex, rec_char
352 ; Note:
353 rechyte:
0201 3F84 354 CLR hex ;clear result
355
356 recbl:
0203 CDO1E3 357 JSR receive ;get a character
0206 B782 358 STA rec_char ;save the char
0208 CDO10A 359 JSR transmt ;echo the result back
020B B682 360 LDA rec_char ;get rec_char
020D macro 361 i f_equal #cr, recb2
0211 ADAC 362 BSR t o_hex ;convert to hex
0213 2512 363 BCS rech3 ;done if no character
0215 3884 364 LSL hex ;shift result left 4 times
0217 3884 365 LSL hex
0219 3884 366 LSL hex
021B 3884 367 LSL hex
021D BA84 368 ORA hex ;add new val ue
021F B784 369 STA hex ;save it
0221 20EO 370 BRA recbl ;junmp back to start again
371
372 recb2:
0223 B684 373 LDA hex ;return result
0225 98 374 CLC ;wWth no carry
0226 81 375 RTS
376
377 rech3:
0227 A607 378 LDA #bel |
0229 CDO10A 379 JSR transmt ;transmit a bell char.
022C 99 380 SEC ;set error flag
022D 81 381 RTS ;and return
382
022E 383 $I NCLUDE "pritse\prog. asni
MOTOROLA AN499/D

22



PRI TSE. ASM
PRogram | T- SEI f
Program routi nes

Assenbled with |ASM  03/10/1994 10:13 PAGE 11

383
384 ; |ast change 94-03-09
385
386 ;= Readi ng and witing to =
387 ;= and fromthe EPROM =
388 ;
389
390 ; XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
391 ;x Read routine X
392 ; XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
393 ; Function: read_rout(,)
394 ; Input: address in adr_hi and adr_lo
395 data in epromdata
396 ; CQutput: none
397 ; Uses: adr_hi, adr_lo, RAM area
398 ; Note: this program shoul d be | oaded at RAM address
399 ;'RAM area' and uses selfnodifying (!!) code.
400 ; This routine is unnecessary conplex as the read operation
401 ; can be made in a nmuch sinpler way.
402 read_rout:
403
404 ; nodify address
022E B68C 405 LDA adr _hi
406
407 ; high byte
0230 C70099 408 STA { RAM ar ea+r eadr 1+1-read_rout }
409
410 ;low byte
0233 B68D 411 LDA adr_l o
0235 C7009A 412 STA { RAM ar ea+r eadr 1+2-read_rout }
413
414 ;next instruction is nodified by the programitself
415 readrl:
0238 C6FFFF 416 LDA $OFFFF ;read the data
023B 81 417 RTS
418
419 read_end:
420
023C 421 read_size EQU {read_end - read_rout}
422
423
424
425 ;= Read =
426
427 ; Function: read(,)
428 ; Description: copy the data from EPROM to RAM
429 ; starting with the |abel "RAM area"
430 ; then junps into this routine.
431 ; Input: address in adr_hi and adr_lo
432 ; CQutput: data in reg A
433 ; Uses: read_rout, RAM area
434 read:
023C AEOE 435 LDX #read_si ze ;no of bytes to relocate
436
437 readl:
023E D6022D 438 LDA {read_rout-1}, X ;get data source
0241 E78D 439 STA {RAM area-1},X ;store in dest
AN499/D MOTOROLA

23



PRI TSE. ASM

PRogram | T- SEI f
Program routi nes

Assenbled with |ASM  03/10/1994 10:13 PAGE 12

0243 5A 440 DECX
0244 26F8 441 BNE readl ;loop until routine is copied
442 ;into RAM
443
0246 BDSE 444 JSR RAM ar ea ;call the routine in RAM
445
446 read2:
0248 81 447 RTS
448
449
450 ; XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXX XXX
451 ;X Programme routine X
452 5 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XX XXX XXX XXXX
453 ; Function: prog_rout(,)
454 ; Description: This is the central programm ng routine
455 ; Input: address in adr_hi and adr_lo
456 data in epromdata
457 ; CQutput: none
458 ; Uses: porta, adr_hi, adr_lo, epromdata, eprog
459 ; Note this program shoul d be | oaded
460 ; at address 'RAM area' and uses selfnodifying (!!) code.
461
462 prog_rout:
0249 463 $I FNOT debug
0249 1000 464 BSET pgnr, porta ;turn on VPP
024B macro 465 out port pgnr, porta
024D 466 $ENDI F
467
024D B68C 468 LDA adr _hi ;nodi fy address
024F C700A1 469 STA {RAM ar ea+sel f _npd+1- prog_rout}
0252 B68D 470 LDA adr_l o
0254 C700A2 471 STA { RAM ar ea+sel f _npd+2- prog_rout }
472
0257 B68B 473 LDA eprom dat a ;get the data
474
0259 475 $I FNOT debug
0259 14i1C 476 BSET I at ch, eprog ;set lat bit
025B 477 S$ENDIF
478
479 ;next instruction is nodified by the programitself
480 sel f_nod:
025B C7FFFF 481 STA $FFFFH ;wite data to EPROM
482
025E 483 $I FNOT debug
025E 101C 484 BSET epgm epr og ;set pgm bit
0260 485 S$ENDI F
486
0260 AEO4 487 LDX #pr_tinme ;time counter in X
0262 4F 488 CLRA ,reset A
489
490 progl:
0263 9D 491 NOP ;delay 256 * 4uS = 1 nS
0264 4A 492 DECA ;8 cycles = 4 uS/ |oop
0265 26FC 493 BNE progl
494
0267 5A 495 DECX ; decrenent X
0268 26F9 496 BNE progl ;and loop till X =0
MOTOROLA AN499/D

24



PRI TSE. ASM
PRogram | T- SEI f
Program routi nes

Assenbled with |ASM  03/10/1994 10:13 PAGE 13

497
026A 151C 498 BCLR | at ch, eprog ;clear lat bit
026C 111C 499 BCLR epgm epr og ;clear pgmbit
500
501 ;turn off VPP
026E 1100 502 BCLR pgnr, porta
0270 macro 503 inport pgnr,porta
0272 81 504 RTS
505 prog_end:
506
0273 507 prog_size EQU {prog_end - prog_rout}
508
AN499/D MOTOROLA

25



PRI TSE. ASM

PRogram | T- SEI f
Mai n program

Assenbl ed with | ASM

03/10/1994 10:13 PAGE 14

508
509 ;
510 ;= CGet data =
511 ;
512 ; Function: get_data(,): data, carry
513 ; Description: get data fromthe serial |ine
514 ; Check that the input figures are K
515 ; Input: none
516 ; CQutput: carry flag set if error
517 ; Uses: none
518
519 get_data:
0273 macro 520 message data_nsg
0278 CD0201 521 JSR recbyte
027B 2502 522 BCS getl ;quit if error
523
524 ; OK, good result
027D 98 525 CLC ;clear carry
027E 81 526 RTS ; OK, get back
527
528 ;Oh no, error
529 get1:
027F macro 530 nmessage quest_nsg
0284 99 531 SEC ;set carry
0285 81 532 RTS
533
534
535 ;
536 ;= Read bl ock =
537 ;
538 ; Function: read_blk(,)
539 ; Description: read_bl reads the data from EPROM
540 ; and sends it to the SC port
541 ; Input: none
542 ; Qutput: none
543 ; Uses: bytecount, ROM area, adr_lo, adr_hi,
544 ; col count, bytecount
545
546 read_bl k:
0286 3F86 547 CLR byt ecount ;prepare to display 256 bytes
0288 A640 548 LDA #{ ROM area & OFFH}
028A B78D 549 STA adr_lo ;addr = #ROM ar ea
028C A603 550 LDA #{ROM area / 100H}
028E B78C 551 STA adr _hi
552
553 readb2:
0290 macro 554 message buffer_mnsg ;send buffer header
0295 A610 555 LDA #16 ;prepare 16 col ums
0297 B787 556 STA col count ;16 bytes/line
557
558 readb3:
0299 CD023C 559 JSR read ;read the EPROM
029C CDO1A1 560 JSR to_ascii ;wite result in on term nal
029F 3C8D 561 I NC adr_lo ;address: zaddress + 1
02A1 2602 562 BNE readb4
02A3 3C8C 563 I NC adr _hi
564 readb4:
MOTOROLA AN499/D

26



PRI TSE. ASM

PRogram | T- SEI f
Mai n program

Assenbled with |ASM  03/10/1994 10:13 PAGE 15

02A5 3A86 565 DEC byt ecount ;check if end of nessage
02A7 2706 566 BEQ readbl ;done if yes
02A9 3A87 567 DEC col count ;el se check if end of col count
02AB 27E3 568 BEQ readb2 ;then out put nl
02AD 20EA 569 BRA readb3 ; el se continue
570
571 readbl:
02AF 81 572 RTS ; Done, get back
573
574
575 ;= Find free =
576 ;
577 ; Function: find_free(,): carry
578 ; Description: find free EPROM byte for progranm ng
579 ; Looks at an area that is 256 byte
580 ; large to find free byte
581 ; Input: none
582 ; Qutput: value in adr_hi, adr_|o.
583 ; Carry set if epromis full
584 ; Uses: ROM area
585
586 find_ free:
02B0 AEFF 587 LDX #0FFH ;start at end of table
02B2 A600 588 LDA #er ased ;1 ook for non erased bytes
589
590 find2:
02B4 D10340 591 cwP ROM ar ea, X ;check to see
02B7 2608 592 BNE findl ;jump if the cell is
593 ;not enpty
02B9 5A 594 DECX ;yes, decrement X
02BA A3FF 595 CPX #SFF
02BC 26F6 596 BNE find2 ;junp back if X >0
02BE 4F 597 CLRA
02BF 2004 598 BRA find3 ; EPROM area is enpty
599
600 findl:
02C1 9F 601 TXA ;the cell was not enpty
02C2 4C 602 I NCA ;add one to get first
603 ;empty cell
02C3 270B 604 BEQ find4 ;exit if outside area
605
606 ; conpute absol ute address
607 find3:
02C5 AB40 608 ADD #{ ROM_ ar ea & OFFH}
02C7 B78D 609 STA adr_l o
02C9 4F 610 CLRA
02CA A903 611 ADC #{ROM area / OFFH}
02CC B78C 612 STA adr _hi
02CE 98 613 CLC ;clear carry flag
02CF 81 614 RTS
615
616 ;menory full, send error nessage
617 find4:
02D0 macro 618 message nmem full _nsg
02D5 CDO1E3 619 JSR receive ;wait for keypressed
02D8 99 620 SEC ;set carry flag
02D9 81 621 RTS
AN499/D MOTOROLA

27



PRI TSE. ASM

PRogram | T- SEI f
Mai n program

Assenbled with |ASM 03/10/1994 10:13 PAGE 16

622
623 ;
624 ;= Pr ogr am EPROM =
625 ;
626 ; Function: prog_epron,)
627 ; Description: relocate the program
628 ; from EPROM to RAM
629 ; Moves the programto the area
630 ; starting with the | abel "RAM area"
631 ; The first part of the routine copies
632 ; the second part into RAM
633 ; and then calls it.
634 ; Input: address in adr_hi and adr_lo
635 ; data in epromdata
636 ; Qutput: none
637 ; Uses: epromdata, RAM area
638
639 prog_eprom
02DA CD02B0 640 JSR find_free ;1 ook for free space
02DD 2513 641 BCS prog_eprong ;get out if it can't be found
642
02DF CD0273 643 JSR get _data
02E2 250E 644 BCS prog_epron? ;quit if error
645
02E4 B78B 646 STA eprom dat a ;save the result of get_data
02E6 AE2A 647 LDX #prog_si ze ;no of bytes to relocate
648
649 prog_eproml:
02E8 D60248 650 LDA {prog_rout-1}, X ;get data source
02EB E78D 651 STA {RAM area-1}, X ;store in dest
02ED 5A 652 DECX
02EE 26F8 653 BNE prog_eproml ;loop until routine is copied
654 ;into RAM
655
02F0 BDSE 656 JSR RAM ar ea ;call the routine in RAM
657
658
659 prog_eprong:
02F2 81 660 RTS ;return back
661
662 ;
663 ;= Initilazation routine =
664 ;
665 ; Function: init(,)
666 ; Description: this is where the MCU starts when
667 ; power is applied.
668 ; Ilnput: none
669 ; Qutput: none
670 ; Uses: porta
671 init:
02F3 macro 672 inport pgnr,porta ;turn of pgnr
02F5 1100 673 BCLR pgnr, porta ;turn of f progranm ng vol t age
02F7 1600 674 BSET | ed, porta ;and LED pin
02F9 macro 675 outport |ed,porta
02FB 1200 676 BSET scitr,porta ;set SCl outport pin
02FD macro 677 outport scitr,porta
678
MOTOROLA AN499/D

28



PRI TSE. ASM

PRogram | T- SEI f
Mai n program

Assenbl ed with | ASM

03/10/1994 10:13 PAGE 17

02FF macro 679 message init_nsg ;wel cone nessage
680
681 initl:
0304 09000C 682 BRCLR  key,porta,nmain ;junp to main progranme
0307 CCO30A 683 JwWP pr ogr anme ;or continue with 'programe’
684
685 ;
686 ;= Programme routine =
687 ;
688 ; Function: init(,)
689 ; Input: none
690 ; Qutput: none
691 ; Uses: none
692
693 programre:
694
695 ;read routine
030A CD0286 696 JSR read_bl k ;read and di splay the nmenory bl ock
697
698 ;wite routine
030D CDO2DA 699 JSR prog_eprom ; programme t he EPROM
0310 CC0304 700 JwP initl ;junmp back again
701
702
703
704 ;= Mai n program =
705
706 ; Function: namin(,)
707 ; Description: blinks a LED as fast as programmed
708 ; in the prog routine
709 ; Input: none
710 ; Qutput: none
711 ; Uses: adr_lo, adr_hi, epromdata, porta
712
713 main
0313 CD02BO 714 JSR find_free ;get pointer to first
715 ;free address
0316 B68D 716 LDA adr_|lo ;point at last valid data
0318 4A 717 DECA
0319 B78D 718 STA adr_lo
031B AlFF 719 CcwP #0FFH
031D 2602 720 BNE nai n4
031F 3A8C 721 DEC adr _hi
722 main4:
0321 CD023C 723 JSR read ;read the EPROM cont ent
0324 B78B 724 STA eprom dat a ;save the result
725
726 ; Loop here till key pushed
727 nmainl:
0326 BESB 728 LDX eprom dat a ;nmove result in X
0328 1700 729 BCLR | ed, porta ;turn on LED in port A
730
731 main2:
032A CD0104 732 JSR bi t wai t ;delay 1/2400 s
032D 5A 733 DECX
032E 26FA 734 BNE nmai n2
735
AN499/D MOTOROLA

29



PRI TSE. ASM

PRogram | T- SEI f

Mai n program

Assenbl ed with | ASM

03/10/1994 10:13 PAGE 18

0330 BESB 736 LDX eprom dat a
0332 1600 737 BSET | ed, porta ;turn of f LED
738 main3:
0334 CD0104 739 JSR bi t wai t ;delay 1/2400 s
0337 5A 740 DECX ;any nore |oops to do ?
0338 26FA 741 BNE mai n3 ;if yes, goto main3
742
033A 0800C7 743 BRSET  key,porta,initl ;junp back if npde switch
033D CC0326 744 JWP mai nl ;junp back forever
745
746
747 ;enpty ROM area
0340 748 ORG $
749 ROM area:
750
751 ; Mask Option Register
0900 752 ORG nor _adr
0900 00 753 DB nor
1FFE 754 ORG reset _vector
1FFE 02F3 755 DW init
756
757 END
758
759
Synbol Tabl e
ADR_HI 008C
ADR _LO 008D
BELL 0007
Bl TCOUNT 0080
BI TWAI T 0104
Bl TWAI T1 0106
BUFFER_MSG 014D
BYTECOUNT 0086
COLCOUNT 0087
COUNT 0088
CR 000D
DATA_MSG 0169
DDR 0004
DEL24 0086
DST_ADR 008A
END 2000
EPGM 0000
EPROG 001C
EPROM_DATA 008B
ERASED 0000
ESC 001B
FI ND1 02C1
FI ND2 02B4
FI ND3 02C5
FI ND4 02D0
FI ND_FREE 02B0
CGET1 027F
GET_DATA 0273
HALFBI TWAI T 0100
HEX 0084
MOTOROLA AN499/D

30



PRI TSE. ASM

PRogram | T- SEI f

Mai n program

Assenbled with |ASM  03/10/1994 10:13 PAGE 19

HEXSTR 0191
INIT 02F3
INIT1 0304
I NI T_MSG 012D
KEY 0004
LATCH 0002
LED 0003
LF 000A
MAI N 0313
MAI NL 0326
MAI N2 032A
MAI N3 0334
MAI N4 0321
MEM FULL_MSG 0172
MOR 0000
MOR_ADR 0900
MBG 012D
NL_MBG 0166
PGVR 0000
PORTA 0000
PROGL 0263
PROGRAMVE 030A
PROG_END 0273
PROG_EPROM 02DA
PROG_EPROML 02ES
PROG_EPROMR 02F2
PROG_ROUT 0249
PROG_SI ZE 002A
PR TI ME 0004
QUEST_MBG 0163
RAM AREA 008E
RAM_START 0080
READ 023C
READL 023E
READ2 0248
READB1 02AF
READB? 0290
READB3 0299
READB4 02A5
READRL 0238
READ_BLK 0286
READ_END 023C
READ_ROUT 022E
READ_SI ZE 000E
RECO 01E7
RECL 01EA
REC2 01F0
REC3 01FB
RECB1 0203
RECB2 0223
RECB3 0227
RECBYTE 0201
RECE! VE 01E3
REC_CHAR 0082
RESET_VECTOR 1FFE
ROM_AREA 0340
ROM_END 0900
AN499/D MOTOROLA

31



PRI TSE. ASM Assenbled with |ASM  03/10/1994 10:13 PAGE 20
PRogram | T- SEI f
Mai n program

ROM_START 0100
SAV_CHAR 0083
SCl REC 0002
scl TR 0001
SELF_MD 025B
SRC_ADR 0089
STOPBI T 0002
STRPTR 0085
TO ASCl | 01A1
TO_HEX 01BF
TO HEX1 01D5
TO_HEX2 01C5
TO_HEX3 01DF
TO_HEX5 01E1
TRAL 0124
TRA2 0128
TRA3 0116
TRANSM T 010A
TR_CHAR 0081
XM TVSG 018 0
XM TMBGL 0190
XM TMB& 0182

All products are sold on Motorola’s Terms & Conditions of Supply. In ordering a product covered by this document the Customer agrees to be bound by those
Terms & Conditions and nothing contained in this document constitutes or forms part of a contract (with the exception of the contents of this Notice). A copy
of Motorola’s Terms & Conditions of Supply is available on request.

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and
specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical”” parameters can and do vary in different
applications. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Motorola does
not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in
systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of
the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such
unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.
Motorola and | &4 are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

The Customer should ensure that it has the most up to date version of the document by contacting its local Motorola office. This document supersedes any
earlier documentation relating to the products referred to herein. The information contained in this document is current at the date of publication. It may
subsequently be updated, revised or withdrawn.

Literature Distribution Centres:
EUROPE: Motorola Ltd., European Literature Centre, 88 Tanners Drive, Blakelands,
Milton Keynes, MK14 5BP, England.
ASIA PACIFIC: Motorola Semiconductors (H.K.) Ltd., Silicon Harbour Center,
No. 2, Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong.
JAPAN: Nippon Motorola Ltd., 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141, Japan.
USA: Motorola Literature Distribution, P.O. Box 20912, Phoenix, Arizona 85036.

AN499/D

|'/-_-H"|
*ﬁf MOTOROLA




	1 Introduction
	1.1 Three examples of when this technique could be...

	2 Contents of this application note
	3 How the programming is done
	3.1 Normal programming
	3.1.1 The program in more detail


	4 The new approach
	4.1 Hardware design
	4.1.1 Port PA0
	4.1.2 Port A1
	4.1.3 Port A2
	4.1.4 Port A3
	4.1.5 Port A4

	4.2 Software implementation
	4.3 Software design
	4.3.1 Programming model
	4.3.2 The prog_eprom routine
	4.3.3 The prog_rout routine

	5 Suggested improvements
	5.1 To remove a program
	5.2 To handle larger programs
	5.3 Download the programming algorithm

	6 Conclusion
	Acknowledgements
	Appendix 1
	Appendix 2
	Appendix 3

